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The first volume of the Journal of Fluid Mechanics contained nine articles (of 39) on 
shock waves. Some of these pioneered new branches of fluid mechanics. Others dealt 
with older problem areas. Surprising is one’s realization that important elements of 
all topics are still of current interest. The subjects treated were shock structure, 
diffraction, refraction, waves in supersonic and hypersonic flows, large-amplitude 
acoustic and blast waves, and astrophysical processes. The subsequent addition of 
work on chemically reactive flows, radiating and laser-induced shocks, the effects of 
electric and magnetic fields on shock propagation in ionized media and the develop- 
ment of computer-based methods of analysis have greatly broadened the scope of 
shock wave investigations during the ensuing twenty-five years. 

The paper traces some of the principal lines of investigation from early motivations 
to the present state of understanding and application. Motivation is not often con- 
sciously expressed in the scientific literature. Usually an external motivation in terms 
of identifiable needs for better understanding for the solution of practical problems 
can be identified; though much excellent work must be ascribed to that ubiquitous 
trait curiosity. 

The topics covered in this article were chosen as representative of the basic elements 
of shock wave interactions and effects. They are: shock structure, refraction, diffrac- 
tion, shocks in liquid helium, and condensation and liquefaction shocks. The paper 
closes with an assessment of how approximate and computational methods developed 
for handling complex flow problems fare when applied to some of the basic shock 
interactions considered here. Most of the emphasis will be on shock waves in gases, 
for which knowledge of an equation of state has been key to  the significant advances 
made during the last twenty-five years. For liquids and solids, shock waves have been 
used the other way around; to study state properties. 

1. Introduction 
The occurrence of shock waves is commonly associated with supersonic flight, 

explosions and electric discharges. Other processes have also been found to generate 
abrupt compression fronts having similar features. The importance of shock waves in 
practical applications of fluid mechanics is due to the nearly instantaneous changes 
in fluid velocity and pressure they produce, while the inherent nonlinearity of the 
governing equations provides a challenging field for analysis. Thus the geometrical 
design of any structure associated with supersonic flows is directly influenced by the 
fact that compression may occur over an infinitesimal interval but expansion must 
occupy a substantial space. The search for adequate methods to treat the nonlinear 
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terms in the fluid flow equations has unfolded a rich array of analytical solutions, 
series approximations, special methods such as asymptotic matching and, most re- 
cently, numerical techniques. We find examples where the accuracy of an approxima- 
tion is far better than the underlying assumptions seem to warrant and, by contrast, 
instances where an apparently clear and appropriate set of assumptions yield highly 
misleading results. Such anomalies have helped to keep the study of shock waves 
alive and well. 

Shock waves appear when elements in a fluid approach one another with a velocity 
larger than the local sound speed. The thickness of a shock front in air is typically 
lO-'m, very small compared to other lengths characteristic of most fluid flows. 
Only compression shocks are observed; rarefaction shocks imply a net entropy de- 
crease for any medium having credible thermodynamic properties. I n  the weak limit 
a shock becomes an infinitesimal sound signal with pressure-temperature-density 
relations given by acoustic theory. Short of relativistic velocities, no upper limit exists 
on the possible speed, pressure rise, or temperature rise of a shock wave although the 
density ratio across a shock front has an asymptotic value dictated by the molecular 
properties of the fluid. 

This article traces the development of interest and understanding about a number 
of important shock wave processes. A surprising number of the problems of current 
fundamental and practical concern were the subject of papers in the first volume of 
this journal. Nine of the 39 articles appearing there dealt with shock structure, 
diffraction, refraction, waves in supersonic and hypersonic flow, large amplitude 
acoustic and blast waves and astrophysical processes. Subsequent events revealed the 
role of radiation in shock formation and propagation and the rich field of electro- and 
magnetogasdynamic waves. 

I n  preparing the article i t  became apparent that  much of the highly original and 
fundamental work on shock waves has been stimulated by practical needs. Therefore, 
rather than attempting either a definitive historical survey or comprehensive coverage 
of the entire field, both of which woilld be beyond my competence anyway, I have 
chosen to trace a modest number of aspects of the subject from their origins to their 
current status. The references given are intended to highlight key features of develop- 
ment. Readers with special interests may use the citations in these papers to recover 
more complete details. Much of the following account treats shock waves in gases 
where the knowledge of an equation of state makes possible something of a parity 
between theoretical and experimental understanding. 

The following sections deal in turn with : shock structure, regular and Machreflection, 
refraction, diffraction, shock waves in helium I and 11, condensation and liquefaction 
shocks, and numerical methods. 

2. Structure of shock waves 
Riemann's well-known theory for the steepening of compression waves and Schar- 

din's early work with spark photography indicated that shock waves must be very 
thin compared with ordinary laboratory dimensions. A simplified model in which 
viscous dissipation of kinetic energy is balanced by convective steepening yielded 
a valae for shock thickness of the order of a few molecular mean free paths, or N lo-' m 
in air. Gilbarg & Paolucci ( 1  953) were the first! to solve the rompletc Navier-Stokes 
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equations applicable to  this problem. They found good agreement between the 
continuum theory for an ideal gas and the available experimental profiles for weak 
shocks, ill < 1.5, but the thickness predicted for stronger shocks was less than one 
mean free path in the gas ahead of the shock front. For such large gradients the 
applicability of continuum theory should be suspect despite the observed agreement. 

Since the equations of fluid mechanics correspond to the zeroth- and first-order 
terms in the kinetic-theory expansion of the Boltzmann velocity distribution function, 
more accurate results for strong shocks were expected when higher-order terms were 
included. Early results were disappointing. I n  general the Navier-Stokes solutions 
persisted in fitting the data best and difficulties were encountered in getting the 
kinetic-theory solutions to  converge even for shock Mach numbers below 2 .  Grad 
(1952), for instance, was able to obtain solutions only up to ills = 1.65 using a method 
based on thirteen integrals (moments) of the velocity distribution function that 
accounted for density, temperature, velocity, stress and heat flow. Except for the 
important conclusion that shock fronts are indeed just one or a few mean free paths 
thick, and therefore could be treated as discontinuities in most situations, theoretical 
and experimental understanding remained in limbo for a long time. We shall see 
presently how the matter was finally resolved. Meanwhile another aspect of shock 
structure attracted major attention. 

Blackman’s (1956) paper in volume 1 of this Journal described the role of molecular 
vibration in modifying shock structure. He studied 0, and N,. A major growth of 
interest in all of the ‘internal’ degrees of freedom in molecules emerged rapidly, 
prompted by the needs of engineers concerned with the design of propulsion systems 
and re-entry body heat shields for rockets and satellites. Almost concurrently the 
declassification of work on the containment of plasmas stimulated widespread study 
of ionizing shock waves and the beliaviour of shock waves in plasmas. 

Shock waves in polyatomic gases and those in air strong enough to populate internal 
vibrational states were observed to  have a narrow, unresolved shock front followed 
by a wide, exponentially decaying tail. Of the internal atomic and molecular energy 
states of gases, only molecular rotation was found to follow the kinetic temperature 
rapidly; within about four collisions. Vibrational relaxation, dissociation, chemical 
reactions, and several electronic processes generally required much longer times and 
larger distances to reach equilibrium. Further developments in the continuum theory 
of shock structure were thus encouraged, using the models of Landau and Teller 
based on quantum collision theory and physical chemistry to describe the processes 
of energy exchange between the internal modes. 

This was done for vibrational relaxation by Griffith, Brick1 & Blackman (1956), for 
chemical dissociation by Lighthill (1957, 1960) and for ionization by Petschek & 
Byron (1957). These models assumed a shock front of negligible thickness to which the 
Rankine-Hugoniot relations were applied with the specific heat ratio, y, calculated 
using only the fast equilibration of translational and rotatioiial motions. Full equili- 
brium was reached through a simple exponential relaxation in the case of vibration, 
and more complex functions for the other processes. One consequence of the success 
of this type of model was the experimental determination using shock tubes of a large 
number of rate constants for vibrational relaxation, dissociation, fast chemical re- 
actions and electronic excitation and ionization processes. Theoretical calculations of 
these rates has continued to  prove extremely difficult. Another application has been 
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FIGURE 1. Interferogram of a fully dispersed shock wave travelling to the right through CO, 
at M, = 1.04. Density is proportional to the vertical displacement of the fringes. The two outer 
hairlines are 1 in apart (Griffith & Kenny 1957). 
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FIGURE 2. Theoretical temperature, velocity and density profiles of a plane shock travelling 
to the right in a plasma in the presence of a transverse magnetic field. The X-dimension is 
expressed in terms of the upstream mean free path for neutral atoms. The case shown is for 
magnetic pressure equal to kinetic pressure, low electrical conductivity and a shock density 
ratio of 1.5:1 (Marshall 1955). 
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to the understanding of plane gaseous detonation waves, where an ambiguity existed 
regarding the application of the Chapman-Jouguet condition. Since the speed of 
sound depends on y, the local value varies, depending on whether the fast energy modes 
or the full equilibrium value is used. This distinction will also prove helpful in resolving 
a confusing aspect of the theory of Mach reflection discussed later. 

The existence of two sound speeds in fluids with lagging internal energy states 
leads to some interesting physical effects. The first of a number of examples of dis- 
persed shock waves was studied theoretically by Lighthill (1956) and observed experi- 
mentally by Griffith & Kenny (1957). For carbon dioxide a t  room temperature, the 
slow and fast sound speeds differ by a little over 4 yo. A disturbance moving with a 
speed between the two has a profile that is limited by the rate of vibrational excitation 
and cannot steepen further, as shown in figure 1. An excellent survey of the role of 
such dispersion mechanisms on the propagation of waves in the atmosphere was made 
by Johannesen & Hodgson (1979). 

Magnetogasdynamic shocks have also been found to be dispersed, in part because 
the great mass difference between electrons and ions makes energy exchange slow 
and partly through the addition of a magnetic pressure term. Marshall (1955) found 
that, for a gas of low electrical conductivity with equal magnetic and kinetic pressure, 
a shock is spread over lo4 collisions as shown in figure 2. In  sufficiently rarefied plasmas 
in the presence of a magnetic field, collisionless shocks have been observed (see DeSilva, 
Dove & Spalding 1971, for example). Two-body collisions between particles are re- 
placed by longer-range interactions between fields and charged particles; typical 
dimensions in the compression front being of the order of the ion gyroradius. Such 
collisionless shocks have been observed in the region where a planetary magneto- 
sphere forms a bow shock in the solar wind. 

The collisional structure of shock fronts in simple gases remained an enigma during 
the long period when these other aspects of complex shocks were being resolved. 
Liepmann, Narasimha & Chahine (1962) identified the low-pressure side of a shock 
front up to the point of maximum gradient as the region in which the major theoretical 
uncertainties existed. A considerable quantity of data on shock front profiles was 
gradually obtained using improved techniques in measurement and the range of 
speeds studied was finally extended to M = 10 (Alsmeyer 1976). Theoretical work led 
to a greater appreciation of the importance of the relation between the repulsion- 
attraction force field assumed for molecules and the temperature dependence of the 
viscosity coefficient. The proper manner of expanding the velocity distribution func- 
tion, however, continued to elude theoreticians. 

Bird (1970) tried a new approach, a direct simulation of the Boltzmann equation 
using the Monte Carlo method, with impressive success. Using his results and Als- 
meyer’s (1976) data, Elliott, Baganoff & McGregor (1977) devised a method for 
greatly simplifying the computational problem in Grad’s thirteen-moment method 
by some plausible choices for the characteristic temperature and velocity used in the 
distribution function. Figure 3, from Elliott et aE., illustrates the agreement between 
their computations and Alsmeyer’s data. It thus appears that proper theoretical 
methods for predicting the structure of shock fronts have finally been found. In  retro- 
spect the notion of adding successive approximations to the upstream velocity dis- 
tribution function f,, didn’t work well because an unmanageable number of terms 
would have been needed, as pointed out by Elliott et al. Limits to the applicability of 
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FIGURE 3. Structure of a shock of M, = 9.0 in argon. * * * - - ., Alsmeyer’s data; -- , theory 
of Elliott et al. for ,u cc TO.72. Theory and experiment show excellent agreement over the central 
60 % of density change. 

the Navier-Stokes equations to strong shocks found by Liepmann et al. result from 
the same circumstance. 

One more facet of shock structure and propagation is of theoretical interest even 
though absolutely no experimental data are available : relativistic shock waves. 
These are believed to  occur in nova outbursts and other cosmic events and may 
appear in high-energy collisions of nuclei. Chapline & Weaver (1979) analysed the 
structure of relativistic shocks in simple gases having values of y between 2 and 10 
and, neglecting possible particle production, found no unusual features. 

3. Regular and Mach reflection 
The first recording of shock reflection was made by Mach (1  878) using two simul- 

taneous sparks to generate intersecting waves. His experiments were done in the half- 
plane above a flat surface dusted with lampblack. A trace remained along the path on 
which shocks intersected, as shown in figure 4. Beyond a certain angle the straight 
trace split into two curved tracks, indicating that a third shock had formed which 
connected the initial wavefronts. This interesting but seemingly benign phenomenon 
has proven to be the focus of one of the most persistent and frustrating pursuits of 
understanding in fluid mechanics. 

The study of Mach reflection, the name eventually given to three-shock reflection, 
revived during World War I1 when scientists became concerned with the effects of 
large air blasts. Depending on angles and distances, a structure might be impulsively 
loaded by the incident-reflected shock pair or by the single, stronger Mach stem. 
Field measurements were supplemented by laboratory studies in the shock tube, re- 
invented to calibrate field pressure gauges. Sketches of typical regular and single 
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FIGURE 4. Sketch taken from Mach's 1878 drawing of the Interferenzstreifen vv and v'v', showing 
the V-formige Ausbreitung of the locus of points along which shocks initiated at  a and b intersect,. 
Simultaneous sparks at points a and 6 each generated spherical shocks. In  travelling over a flat 
surface dusted with lampblack the shocks left a distinct trace along their points of intersection, 
starting a t  the point midway between a and 6 ,  and then advancing along the bisector of a and b.  
During this early phase of interaction the spherical shocks reflected off each other as though in 
regular reflection from an imaginary plane through the bisector. Subsequently a Mach stem 
formed, connecting corresponding points on curves tw and w'd. Since only the locus of points 
where shocks intersected was recorded, Ernst Mach displayed impressive deductive power in 
grasping the meaning of traces like this.? 

Mach reflection patterns are shown in figure 5, along with the angles defining conditions 
close to  the shock intersection point. 

The planarity and extreme thinness of shock waves in air permitted quite accurate 
measurements of angles to be made from spark shadowgraphs taken with the shock 
tube. L. Smith (1945) mapped out the regions of regular two-shock and Mach three- 
shock patterns. He observed that regular reflection occurred for sufficiently low angles 
of incidence a (or high wedge angles 0,) a t  all shock strengths. He also determined the 
boundary between regular and Mach patterns by extrapolating data on the relative 
height of the Mach stem, as measured by the angle x, to zero. 

A theoretical analysis by von Neumann (1943; see von Neumann 1063) was made 
using the following assumptions: 

(1) The fluid is an inviscid perfect gas with constant y.  
(2) Shocks are discontinuities with finite curvature. 
(3) Close to the shockintersection, two-dimensional steady-flow theory is applicable. 
(4) The net flow deflection in regular reflection is zero; 6, + 6, = 0. 
(5) For three-shock reflection, downstream pressures and flow angles behind the 

incident-reflected shock pair and the Mach stem are equal. This implies the existence 
of a slipstream which separates flows of differing speeds and entropies. 

The two-shock theory yielded two solutions for the reflected wave and the three- 
shock theory gave multiple solutions for sufficiently strong incident shocks. Com- 
parison with experiment confirmed Nature's choice of the weaker of the two possible 
reflected shocks in regular reflection, so von Neumann used the weaker shock argument 
in selecting the physically correct solution from the multiple values yielded by three- 
shock theory. 

Since even these solutions gave regions in y,a,ill,  space where both two- and 
three-shock patterns might occur, criteria for the transition were needed. One likely 
choice for the limit to  regular reflection was the extreme condition on flow deflection 
by the reflected shock where the weak and strong shock solutions converge. In  steady 

I thank Professor G. T. Tieynolds and Dr Peter Cziffia of Princeton for providing a copy 
of Mach's original paper. 
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FIGURE 5 .  Typical regular (a) and single Mach reflection (b )  patterns in pseudo-stationary flow. 
The incident shock I of speed M, reflects from a wedge of inclination 8,, producing a reflected 
shock R .  For sufficiently high angles of incidence ao, a Mach stem S and slipstream SS appear. 
In  a frame of reference moving with the shock intersection point, Mu = M,/sin (B,+x), 
and wo = a,, - 2. The latter variables describe the comparable steady-state reflection observed 
in a wind tunnel. 

aerodynamics this is the half-wedge angle at  which a bow shock in supersonic flow 
becomes detached with maximum flow deflection being IS, and the corresponding 
shock angle designated as aD. Von Neumann also considered another criterion that 
he called direct pressure compatibility. With this concept, transition would occur 
when a vanishingly small Mach stem normal to the incoming flow could link the inter- 
section of incident and reflected shocks to the wall with equal pressures behind. Such 
patterns can exist only for incident shock strengths above a limiting value dependent 
on y .  For y = 1.4 he found this shock pressure ratio to be 2.3086, corresponding to 
M, = 2.2. The resulting condition for transition gives a value for incidence angle aN 
that is less than a,. Von Neumann concluded that aD was the appropriate transition 
criterion for weak shocks (M,  c 2.2),  and aN for strong shocks (M, > 2.2). 

Shock-polar diagrams for two- and three-shock processes were used by Kawamura 
& Saito (1956) to study the flow conditions for which von Neumann’s transition 
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FIGURE 6. Criteria for transition froin regular to Mach reflection in shock-polar plots. 1 is the 
incident shock, R the reflected. ( a )  The case where the reflected polar becomes tangent to the 
pressure axis below the I-polar intercept. (b )  Von Neumann's condition where a, = aN and 
transition occurs with an infinitesimal Mach stem. (c) At still higher values of tl two shock 
patterns are possible, 0-1-2 and 0- ( 1 ,  2')-3. 

I \  

criterion change from aD to  aN. The three polar plots in figure 6 illustrate possible 
limits to  two-shock reflection €or M, 5 2.2  €or gas with y = 1.4. For weak incident 
shocks, I compresses and deflects the flow from state 0 to state 1.  The reflected shock 
polar R intersects the pressure axis below the I-polar intercept. The solution €or 
maximum deflection by the reflected shock arises when the reflected shock polar is 
just tangent to t h e p  axis as shown in figure 6 (a ) ,  taking the gas from state 1 to state 2 .  
Figure 6 ( b )  shows the situation when Jf, = 2.2 ,  the lowest speed a t  which von Neu- 
mann's condition of direct pressure compatibility can be satisfied. For M, > 2.2,  the 
I and R polars are shown in figure 6 (c), again for the solution in which the R-polar is 
tangent to  t h e p  axis. Point 2 still corresponds to the condition of maximum deflection, 
S,, by R, but n three-shock solution a t  point 3 is also possible. The Mach stem S 
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FIGURE 7. Theoretical curves for gases with y = $ showing the rapid divergence of the two 
criteria for transition, a D  and a ~ ,  at shock Mach numbers above No = 2.2.  For gases with 
y = 5, the separation is slightly less. Shock-tunnel data show clearly that EN is the proper 
criterion in steady flows, while transition OCCIII’S somewhere between a,v and a D  for M, > 2.2  
in pseudo-stationary flows. 
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provides equal pressures and flow deflections behind the triple point where I ,  R and 
S meet. According to von Neumann, the three-shock pattern should be observed under 
these conditions rather than the two-shock solution. With increasing incident shock 
speed aN and a, diverge appreciably as shown in figure 7 .  

Smith's data showed agreement between theory and experiment for both two- and 
three-shock patterns a t  the higher incident shock strengths studied. For incident 
shocks of pressure ratio 1.25, however, the deviations from both two- and three- 
shock theories reproduced in figure 8 appeared. I n  view of the agreement noted above, 
the clear departure from theory in regular reflection, the apparent persistence of 
regular reflection beyond aD and the unconvincing gap in three-shock reflected angles 
was particularly puzzling. Other theoretical approaches were tried and different 
transition criteria suggested, mostly to little avail. We shall see that von Neumann's 
criteria are most likely the correct (or nearly correct) ones although it has taken 
thirty-five years to find this out. Meanwhile the disparity between theory and experi- 
ment became known as von Neumann's paradox. 

Additional data on the transition from two-shock to three-shock configurations 

FIGURE 7. Theoretical curves for gases with y = $ showing the rapid divergence of the two 
criteria for transition, a D  and a ~ ,  at shock Mach numbers above No = 2.2.  For gases with 
y = 5, the separation is slightly less. Shock-tunnel data show clearly that EN is the proper 
criterion in steady flows, while transition OCCIII’S somewhere between a,v and a D  for M, > 2.2  
in pseudo-stationary flows. 
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seemed only to deepen the paradox. Besides single Mach reflection two additional 
patterns were found a t  high incident shock strengths. Now commonly referred to as 
complex Mach reflection, first observed by L. Smith (1945)) and double Mach re- 
flection, first observed by White (1952), both are associated with an outflow behind 
the reflected shock that is supersonic relative to  the triple point. These patterns are 
peculiar to  time-dependent flows in a shock tube; steady wind-tunnel data shows only 
regular or single Mach reflection patterns. The cause of the additional patterns in 
shock tube experiments has been traced by Gvozdeva et al. (1969) to an interaction 
between the main flow over the wedge and vibrationally excited gases coming from 
the reflected shock and Mach stem with a correspondingly increased specific heat 
ratio. Ben-Dor & Glass (1979) have mapped out the regions in M,, 6, space for single, 
double and complex Mach reflection. 

The equivalence between steady shock patterns seen in a wind tunnel and an ob- 
servable region around the point of shock intersection in pseudo-stationary shock tube 
flow has been carefully considered. Bleakney found no discernible departure from 
pseudo-stationarity over a time factor of about 50: 1 for single Mach reflection. On the 
other hand parts of the flow fields in complex and double Mach reflection are neither 
steady nor pseudo-stationary and, as mentioned before, have no counterpart in 
steady wind-tunnel flows. Sternberg (1959)) Zaslavskii & Safarov (1973)) Henderson 
& Lozzi (1975)) Hornung, Oertel & Sandeman (1979) and others have searched for 
‘hidden’ departures from the locally steady patterns actually observable, with 
ambiguous results a t  best. 

Recent measurements made with careful attention to  obtaining good optical 
resolution of nearly two-dimensional flows in wind tunnels and shock tunnels have 
cleared up a t  least a part of the long-standing confusion over the correct transition 
criteria for strong incident shocks. For steady flows a t  M,, = 3 and 4 the data of 
Henderson & Lozzi ( 1  975) and that of Hornung et al. ( 1979) up to Jfo = 15 convincingly 
support a, as the correct criterion. As indicated by figure 7, a, and aAV are well 
separated a t  these shock speeds. No such clear-cut statement can be made for the 
pseudo-stationary case. The data of different investigators show regular reflection 
to occur in the zone between aN and aD, but do not firmly establish where i t  ends. 

One aspect of Mach reflection that has given experimentalists particular trouble is 
determination of the angle x, giving the locus of the triple point in pseudo-stationary 
flows. This angle is not predicted by the local theory. The Mach stem and its most 
readily observable indicator, the slipstream, become lost to view close to  the inclined 
wedge for Mach reflection near transition. W. R. Smith (1959) eliminated the optical 
interference of the inclined wedge by observing the interaction in free space between 
shocks reflected from a pair of tilted plates. His data for weak shocks, Jfo < 2.2, is 
probably the best available and supports von Neumann’s conjecture that Mach 
reflection occurs for a > a,. Ben-Dor & Glass (1980) and Henderson (1980) compare 
approximate theories for x = x ( O , ,  Jfo) with their experimental data and do not find 
completely satisfactory results (figure 9). The theoretical prediction of x or Mach stem 
length evidently awaits a full-field solution for pseudo-stationary flow. 

Because no adequate solution for the entire transient flow field has been devised, 
experimentalists are constrained to compare their observations with a local, steady- 
state theory. This presents a quandary; each data point represents the flow pattern 
at  an instant of time and for predetermined initial conditions. There is no physical 

4 2  
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FIGURE 9. Ben-Dor’s (1978) approximate theory and data for the 

angle x (see figure 5 )  for small wedge angles. As M, --f 1, x --f 0. 

connection between the flow pattern in one experiment and another having slightly 
altered initial or boundary conditions. Any differences observed cannot reasonably 
be taken to  imply a continuous change between the two. I n  some very interesting 
work by Hornung et al. (1979) a length-scale effect is suggested to  explain conflicting 
data in the range between a,\, and aD. They argue that, since the generation of a Mach 
stem introduces a meaningful length scale into an otherwise dimensionless regime, 
some signal must be able to reach the point of shock intersection to maintain Mach 
reflection. This strikes me as spurious reasoning for pseudo-stationary flows because 
an observed pattern showing a small Mach stem is a completely independent event 
from one showing regular reflection a t  a slightly smaller a.  Each pattern has pre- 
sumably grown from the time the incident shock first reached the inclined wedge, a t  
point 0 in figure 5, so no change in pattern need occur. If concave or convex wedges 
are used so that a varies between aN and ctD, then the entire process is transient and 
a hysteresis effect may well arise. Ben-Dor, Takayama & Kawauchi (1980) and Itoh, 
Okazaki & Itaya (1981) indeed report such a transient effect. 

Thus far the discussion has focused on the criteria for transition between two- and 
three-shock reflection patterns and the presumption that observers have been able to 
resolve flow patterns near enough to shock intersections for angle measurements to 
represent those of a locally steady region. We see that von Neumann’s first assumption, 
of an inviscid perfect gas with constant y ,  has scarcely been examined. He recognized 
the dependence of wave angle on y and tabulated critical conditions for a number of 
values of y.  Extensive computations for reflected shock angles were made only for 
y = 1.400, however, and for years experiments in air were compared with these values. 
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Only recently have some of the most important departures from such idealized gas 
behaviour received quantitative treatment. 

Almost all real-gas effects act to  increase the true values of aN and aD or otherwise 
deceive observers into thinking their data shows regular reflection persisting into a 
range where Mach reflection should theoretically occur [based on y = 1.4001. These 
include vibrational contributions to the specific heat and time-dependent dissociation 
of oxygen and nitrogen. Also, the displacement thickness of the boundary layer on 
the wedge behind an incident shock is negative for a frame moving with the shock 
confluence point. Ben-Dor & Glass (1979) and Hornung et al. (1979) present real-gas 
computations and the latter estimate displacement effects. Many of the earlier dis- 
crepancies and inconsistencies seem explainable with these factors, but no one has 
been able to  explain why the idea of a locally steady flow model is not applicable for 
weak incident shocks. 

That the clarity and elegance of von Neumann’s early theoretical ideas on shock 
reflection still pervade thinking about the problem is evident from the preceding 
discussion. Also apparent are the observations that he was correct in identifying the 
physically observable branch of multivalued solutions and the criteria for appearance 
of two- and three-shock patterns. Two significant theoretical problems remain as 
residuals of the ‘ von Neumann paradox ’ : the possibility that two stable configurations 
exist between aN and a, for strong shocks in pseudo-stationary flows and a model for 
the Mach-like shock patterns observed by White (1952) for JIo < 1.25. Henderson 
(1964) showed that no solutions of voii Neumann’s equations exist for illo in this range 
when the flow deflections by incident and reflected shocks have opposite signs. Ben- 
Dor (1978) found solutions for 1 < JIo < 1.25 when I and R both deflect the flow 
towards the wall but experiments don’t indicate the existence of the necessary forward- 
facing inclination of the reflected shock R. 

4. Refraction 
The discussion in this section will address the interaction of a plane shock incident 

a t  an angle a upon a discontinuity in some thermodynamic property that changes the 
acoustic impedance pa,, where p is density and a is the local sound speed. Even for 
this simple, restricted case the great variety of refraction patterns found is indicative 
of the complexities of both civil and military problems. Civil applications include 
geophysical explorations using underground explosions and the sonic bang from 
supersonic aircraft. Military applications include refraction of shocks from air and 
underwater bursts. 

Volume 1 of this Journal contains the first comprehensive experimental study of 
shock refraction, by Jahn (1956). He worked with pairs of gases having the same 
pressure and temperature, separated by the thinnest membrane he could fabricate. 
A number of steady, pseudo-stationary, and irregular transient patterns of interaction 
were found. A theory for the locally steady flows had been worked out by Taub (1951) 
and Polachek & Seeger (1951) using a model similar to that employed by von Neumann 
in analysing regular and Mach reflection. A substantial extension to identifying poss- 
ible irregular patterns and the conditions for which they might occur was made by 
Henderson ( 1  966) and a general definition of shock impedance developed by the same 
author (Henderson 1970). Abd-el-Fattah, Henderson & Lozzi ( 1  976) and Abd-el- 
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FIGURE l u .  Some patterns of shock refraction. (a) Regular refraction at  an air-methane inter- 
face, line 0-0. The incident, transmittod and reflected shocks I ,  T and R are straight until 
caught by the respoctive sonic corner signals C and C’. The interface is deflected to D (Jahn 
1956). ( b )  Irregular refraction at an air-methane interface showing a Mach stem S ,  slipstream 
SS, as well as the features identified in (a) (Jahn 1956). ( c )  lrregular refraction at a carbon 
dioxide-methane interface showing a precursor in the methane. From Abd-el-Fattah & Hen. 
derson ( 1 9 7 8 b ) ,  who mapped out the boundaries between nuinerous types of irregular patterns. 

Pattah & Henderson (1978a, b )  experimented with more disparate gases and pro- 
duced extensive data for several regimes. 

Three representative patterns are shown in figure 10, showing regular refraction 
with straight shocks near the interaction point, a pseudo-stationary interaction with 
a scale length introduced by a Mach stem, and an irregular transient flow where the 
transmitted shock races ahead of the incident shock to generate a precursor. We note 
that the approach to ideal conditions is inherently less complete for refraction experi- 
nients than for the reflection studies discussed previously. The inertia and stiffness 
of the membrane and edge effects introduce complexities that  are difficult to quantify. 
Nevertheless some general conclusions may be drawn. Where theory gives multiple 
values for the strength of the transmitted shock, the weakest one is always observed 
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FIGURE 1 I .  Uiffraction at a corner: (a) weak shock and small corner deflection, (b )  strong shock 
and 90" corner. No satisfactory theory exists for predicting where the Prandtl-Mryer expansion 
ends or for the strength of the diffracting shock (Griffith & Brick1 1953). 

(Henderson & Macpherson 1968). In  the region of regular refraction acceptable agree- 
ment exists between the locally steady theory and experiment, and transition to a 
more complex pattern occurs when either the deflection condition aD is reached or some 
wave becomes sonic. 

From the viewpoint of current practical interest most shock refraction problems 
involve extended regions with finite gradients rather than discontinuities in some 
fluid property. Examples of the latter may however be mentioned. One is the role of 
precursors in altering strong air shocks moving over water. Another is the propagation 
of finite-amplitude acoustic waves across the annular regions of differing Mach number 
behind a three-spool jet engine. Henderson & Macpherson (1968) have shown that 
refraction at a flow Mach number interface and a gaseous interface are qualitatively 
identical. If the physical patterns also retain their underlying identities then some 
of the insights gained may apply to  refraction a t  diffuse interfaces as well. 

5. Diffraction 
The complement of reflection at a concave corner, diffraction of a plane wave over 

a convex corner, was originally thought to be an especially tidy problem for analysis 
because the region of disturbed flow is contained by the solid wall, the incident shock 
and a Mach circle (with the addition of a Prandtl-Meyer fan from the corner for strong 
incident shocks). The original questions of interest were whether solutions would shed 
any light on the von Neumann paradox or not and the extent of weakening of the 
incident shock as a function of corner angle. 

Figure 11 illustrates two cases : a relatively weak shock diffracting a t  a small corner 
angle and a strong shock diffracting around a 90" corner. A linearized theory for small 
corner angles and weak shocks was developed by Lighthill (1949). This gave excellent 
agreement with observation but for small concave corners failed to clarify the Mach 
reflection problem because the method assumed vanishing strength for the reflected 
wave near the triple point. 
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FIGURE 12. Temperature-entropy diagram of the saturation region for hexane 
showing how a shock wave converts pure vapour to pure liquid. 

For large corner angles at all incident shock strengths a slipstream grows from the 
corner a t  an angle corresponding approximately to the initial pre-shock pressure. 
This slipstream wraps up into a structured vortex that may be accompanied by an 
embedded shock for the faster flows. The incident shock grows in a pseudo-stationary 
manner. It is observed to have appreciable strength throughout its length. Even a 
180" turn fails to provide immunity from blast effects. Skews (1967) and Bazhenova 
et al. (1971) made numerous measurements with incident shock Mach numbers up to 
4.5 and 10, respectively, and observed a wide array of effects for which no theory has 
been proposed. 

One particularly intriguing aspect of shock diffraction is the early appearance of a 
slipstream and vortex. Clearly originating through the action of viscosity, the effect 
has been detected by Emrich & Reichenbach (1969) only 2 ,us after passage of an 
incident shock over a corner. The diffraction of a shock over an airfoil a t  angle of 
attack produces both transient local forces and a sudden net change in lift. The 
corresponding change in circulation about the airfoil is balanced by that around a 
vortex which is shed into the wake as the trailing edge slipstream rolls up. The simi- 
larity of this problem to gust loading of airfoils in flight has been recognized but not 
pursued quantitatively. 
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6. Shock waves in liquid helium I and I1 
At temperatures below 2.17 K liquid helium forms a superfluid component, LHeII, 

that can move without interaction through normal LHeI. Two independent waves 
have been observed in LHeII associated with the transfer of momentum (pressure) 
and energy (temperature), called first and second sound. Their properties have been 
studied experimentally and theoretically in the linearized approximation but only 
recently has attention focused on nonlinear effects. 

Using a vertical cryogenic shock tube developed by Liepmann, Cummings (1976) 
investigated the propagation of strong shocks in LHeI and LHeII a t  2-62, 2.02, 1.91, 
1.71 and 1.46 K. The incident shock passed vertically downward through helium 
vapour to strike a vapour-liquid interface. Since the impedance match between these 
two phases is quite good in the case of helium, adequate signal strength and time reso- 
lution were obtainable to follow both transmitted and reflected waves. 

Below the A-transition temperature of 2-17 K the single shock front observed in 
LHeI was replaced by two shocks transmitted through the liquid, corresponding to 
first and second sound pulses. Their speeds differed by an order of magnitude. In 
general the quantitative values obtained for first-sound shock waves were within a 
few per cent and second-sound shocks about 25% faster than predicted by available 
theory. Further experiments may elucidate first-second sound shock interactions and 
provide useful guidance in the theoretical study of nonlinear effects in superfluidity. 
This set of phenomena is the only known instance where elementary quantum processes 
lend themselves to direct observation by conventional shock-wave techniques. 

7. Condensation and liquefaction shocks 
The appearance of a mixed vapour-liquid phase or even a pure liquid behind a shock 

front may result from specially contrived circumstances. Although the theory of shock 
formation precludes rarefaction shocks in general, compression shocks in a vapour 
that has been supercooled by rapid expansion yield a partial condensation. This 
phenomenon has been known for a long time in supersonic wind-tunnel work, where 
water vapour condensation places a limit on tunnel operations. A similar effect in 
hypersonic tunnels necessitates heating of the reservoir supply to stay above the 
saturation region of the working fluid. Without heating, expansion nozzles have been 
used to study nucleation processes; see, for example, Wegener & Wu (1976) and Glass, 
Kalea & Sislian (1977). 

Plane shocks with a pure liquid phase on the downstream side have recently been 
observed by Dettleff et al. (1979). With both upstream and downstream states in 
thermodynamic equilibrium, this phenomenon depends on finding a material with 
very high specific heat and a saturation region having a positive slope on the vapour 
side in the temperature-entropy plane. Figure 12 shows hexane C,H,, to have the 
latter property. I ts  specific heat is - 24R, just sufficient to meet the limitation on 
shock temperature rise prescribed by theory for a liquefaction shock. It may be seen 
from the figure how a shock produces a pure liquid in principle. 

I n  practice Dettleff and his co-workers used commercial fluorocarbons and, because 
the liquid densities are so large compared to vapour densities, arranged their 
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experiment so that the expected liquid phase would be formed behind a shock reflected 
from the end of their shock tube. Their data generally support the predictions of 
classical shock-wave theory for the final state. Photographs show small spots through- 
out the liquid which the authors suggest are vortices formed by the differential 
motion of droplets formed during the early stages of condensation. 

8. Numerical methods and other approximations 
The reader may find the heading of this section incongruous after its predecessors 

which deal in turn with various elementary shock processes. For explanation consider 
two important practical problems : raindrops impinging on the bow shock of a vehicle 
in supersonic flight, and shock propagation through a channel of varying area. These 
are instances of external and internal flows, respectively, that involve reflection, 
refraction and diffraction. I n  principle they could be solved using information avail- 
able from the preceding sections. I n  practice we are sometimes concerned not with 
the detailed interactions, but just with the overall effects that result. 

Several conceptual approaches have been proposed for reducing the inherent corn - 
plexity of analysing flows involving multiple shock-wave interactions. The objectives 
have been either to  improve intuitive knowledge about processes or to obtain solu- 
tions of useful accuracy with acceptable costs in time aEd effort. A comparison of the 
results of such methods with complete theory, if available, and with precise experi- 
mental results for some simple configurations tests the range of useful application 
and accuracy. I n  this section such methods are reviewed for their utility in treating 
the basic shock interactions discussed earlier. 

The acoustic approximation is historically the oldest and still the most widely used 
method for getting around the nonlinear terms in the flow equations. With this 
approximation, regular reflection is described as a plane wave with a small pressure 
rise Sp striking a surface a t  angle of incidence a, followed by a reflected wave also 
having a pressure rise of 6p and with the angle of reflection a' = a.  The resulting total 
pressure rise a t  the surface is accordingly 26p. A paradox immediately arises: for all 
angles of incidence a # go", the pressure rise is 2Sp, while, for a = 90' exactly, the 
pressure rise must be just 6p. The paradox is removed when second- and third-order 
terms are considered, for then the reflected wave pressure and angle both change for 
any finite Sp, while for a finite departure of a from 90" a R/lach-like refleetion occurs. 
Thus regular reflection can occur a t  all angles of incidence but its realm approaches 
the $1 = 1, a = 90' corner along the M = 1 (6p = 0) axis. 

G. A. Bird has explored the utility of modelling flows by simulating the motions of 
thousands of molecules with a computer. Auld &: Bird (1977) applied this Monte 
Carlo method to  two- and three-shock reflections, but could not obtain adequate 
resolution of the flow features to state where the transition to Mach reflection occurs. 

Full-field computer codes have also been applied to the problem of shock reflection. 
Schneyer (1975) used a two-dimensional Eulerian code to  simulate the time history 
of an $4 = 2 shock striking a wedge of slope 2:  1 (regular reflection) and 1 : 2 (single 
Mach reflection). He also worked the second problem, using a Lagrangian code for 
comparison of accuracy and cost. Both pressure and density field were plotted. 

The shock fronts were necessarily smeared out over a few cells by the artificial 
viscosity terms employed in the schemes, but the positions and strengths of the 
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waves agreed well with prior data. Only the Lagrangian method showed a slipstream 
emanating from the triple point. Schneyer observed that the Eulerian code was 
easier to  run and cheaper, for the Lagrangian code required rezoning of the grid in 
regions of high shear. 

Kutler & Shankar (1977) reviewed all the available computational methods and 
reworked the regular reflection problem at ills = 2 and also a t  ilh = 4 - 7 1 .  Ben-Dor & 
Glass (1978) then carried out experiments a t  the same conditions to provide accurate 
wave positions and density fields for comparison with both Schneyer’s and Kutler & 
Shankar’s computational results. They concluded that the latter results were superior 
but pointed out that  all of the numerical methods gave poor predictions for the detailed 
density profile along the wall and the region inside hhe reflected shock. 

Book et al. (1980) employed a method for minimizing the effects of numerical 
diffusion within computational cells called Flux-Corrected Transport. When applied 
to shock reflection from a wedge under conditions where double Mach reflection would 
be expected, striking agreement with the observed pattern of shocks resulted and 
portions of the computed density field also showed good quantitative agreement with 
data from interferograms. It appears that  computational methods are becoming 
sufficiently refined to resolve some of the inner details of fundamental concern in 
basic shock interactions. At all events these methods serve well for handling the overall 
effects in complex, practical situations of the sort mentioned a t  the beginning of this 
section. Computational Fluid Dynamics, the name currently used to identify the 
family of computer-based methods, is developing so rapidly that some pleasant 
surprises are certainly in store. 

One further method for analysing shock interactions has the beauty of simplicity 
and an apparent range of uses not wholly explored yet. Often referred to in the literature 
as the CCW methods, it is based on a series of papers by Chester, Chisnell and Whitham 
published in the 1950s. I n  his book, Whitham (1974) shows how the ‘rule ’ is developed 
and illustrates its remarkable accuracy when applied to several problems that would 
otherwise be extremely hard to  handle. He comments that, although the rule works 
well in many cases, ‘no really satisfactory explanation of this was found’. 

Use of the rule to investigate laser-generated shock waves was first made by Jumper 
(1978). The existing analytical solutions were applicable only to constant power input 
or to the case of instantaneous energy release a t  t = 0, while numerical computations 
for a transient power input proved complicated and costly. Jumper found a fairly 
simple, direct relation between the rate of net energy input and the acceleration of 
the shock wave. The results agree very well with experiment and are useful in identi- 
fying where the steady-state solutions are valid. 

I n  perspective it appears that  many formidable problems can be handled with one 
or another of the methods developed for analysing interacting shock waves. The 
discrepancies in detail between the results of careful observation and theory are 
disturbing where they arise, for we are still ignorant of ic*hy a particular model isn’t 
correct when it should be, and vice versa. As a precaution against being misled in the 
future when more powerful and complex numerical methods are developed for the 
practical solution of very complex flow problems, investigators will be well advised 
to test their methods on some of the simple, basic shock processes for which accurate 
measurements are available. 
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